
Basic format for describing PDAs

A PDA is defined by (i) its initial stack symbol, (ii) its initial state, (iii) its set of accepting
states, and (iv) its transition rules. Hence, in order to describe a PDA we write in the first
line the information corresponding to (i), (ii) and (iii), and in the successive lines we write
the transition rules. For instance, with a first line like:

Z q0 q0 q3

we specify that (i) the initial contents of the stack is the symbol Z, that (ii) the initial state
of the automaton is q0, and (iii) that the accepting states are q0 and q3. After that line, we
need to specify each of the transitions rules. To this end, we may use two different syntaxes,
which we describe with examples:

• Z q1 a -> ZA q1
This describes a transition from state q1 when the stack top is the symbol Z and the
input is the symbol a. Executing this transitions would read the next input symbol
(which in this case is a), pop the top of the stack (which in this case is Z), push onto
the stack ZA (implying that we recover the read Z by pushing it again, and then push
an A onto it) and change the state from q1 to q1 again.
The symbol read (a in the example) as well as the symbols pushed onto the stack (ZA
in the example) are optional.

• q1 -> Za|ZA -> q1
The interpretation of this transition is equivalent to the previous one. The benefit
of this alternative syntax is that it allows to write several transitions together if they
share the same origin state and the same destiny state. For instance, if the automaton
also had a transition q1 -> Aa|AA -> q1, we could write both of them together like
q1 -> Za|ZA, Aa|AA -> q1.
As before, recall that the symbol read as well as the contents pushed onto the stack
are optional for each transition.

In order to conclude the explanation, we introduce a complete example automaton. The
following PDA recognizes the language {an bn | n ≥ 0}:

Z q0 q0 q3
Z q0 -> Z q1
Z q1 a -> ZA q1
A q1 a -> AA q1
A q1 b -> q2
A q2 b -> q2
Z q2 -> Z q3

Note that the fourth and fifth rules do not push any symbol onto the stack, and that the
first and last rules do not read any input symbol. This example PDA is deterministic, i.e.,
given a stack symbol, an input symbol and a state, there is at most one transition rule that
can be executed. Moreover, it is also uniquely accepting since there is only one accepting
execution of the automaton for each word in the recognized language. As a final remark,
using the second syntax for the rules, the automaton can be equivalently written as:

Z q0 q0 q3
q0 -> Z |Z -> q1
q1 -> Za|ZA, Aa|AA -> q1
q1 -> Ab| -> q2
q2 -> Ab| -> q2
q2 -> Z |Z -> q3

1

where it is easy to see the correspondence with the graph traditionally used to represent
PDAs:

q₀ q₁ q₂ q₃
Z |

,

|Z bA Z |Z

|bAZ ZA A AAa a||

2

