
Basic format for describing reductions
between programs

In order to describe a reduction from K or K into another set as the following:

x 7→ p =

 input y

run Mx(x)
accept

it suffices to describe the resulting program from the reduction in a concrete programming
language:

input y {
runmxx;
accept;

}

This language is very limited, and its syntax is described by the following grammar:
program: 'input' IDENTIFIER instruction_list

instruction_list: '{' instruction* '}'

instruction: instruction_list
| IDENTIFIER '=' expr ';'
| 'if' '(' expr ')' instruction ('else' instruction |)
| 'accept' ';'
| 'reject' ';'
| 'output' expr ';'
| 'runmxx' ';'
| 'infiniteloop' ';'

expr: comparison (('and'|'or') comparison)*

comparison: addition (('=='|'!='|'<'|'>'|'<='|'>=') addition)*

addition: product (('+'|'-') product)*

product: unary (('*'|'/'|'%') unary)*

unary: ('not'|'-') unary
| IDENTIFIER
| NUMBER
| 'mxxstopsininputsteps'
| '(' expr ')'

where IDENTIFIER is a string over alphanumeric characters and underscore (not starting by
a digit), and NUMBER is a natural number (an integer greater than or equal to 0).

The meaning of the constructions is the usual one. As you can see, there is no need
to declare variables. We can directly assign the evaluation of an expression to them. The
unique data type is integer. The input is assumed to be a natural number. The output is
also assumed to be a natural number. In the case where a negative number is produced as
output, it is considered that the program is rejecting the input. The instruction output
stops the execution and produces the evaluation of the corresponding expression as result.
As we said, if such an evaluation is negative, it is assumed that the input is rejected, and
that the output is −1. This is equivalent to execute the instruction reject. The instruction

1

accept stops the execution and accepts. It is equivalent to execute output with the natural
number 1. As you can see, our programming language does not have loops, but you can
execute the instruction infiniteloop, which is a non-halting instruction. The instruction
runmxx executes Mx(x), where x is the element over which the reduction is applied. The
instruction runmxx halts if x ∈ K, and does not halt in the opposite case. If a variable
called x occurs in the program, then it does not affect the behaviour of runmxx. In other
words, changes on the value of the variable x do not change the behaviour of runmxx, since
it only depends on the value of the x of the domain of the reduction. The expression
mxxstopsininputsteps runs Mx(x) during as many steps as the value received as input
of the program. It evaluates to true if Mx(x) halts in such a number of steps or less, and
evaluates to false in the opposite case. Changing the value of the input variable does not
affect the behaviour of mxxstopsininputsteps. That is, such instruction refers always to
the initial received value as input, and not to the possible changes produced on the input
variable along the execution.

Let’s look an example. In order to prove that {p | ∃y : Mp(y) ↓} is undecidable, we can
make the reduction from K shown above. We also saw how to represent such a reduction.
Alternatively, we can do the following reduction for the same language:

x 7→ p =

 input y

if Mx(x) stops in y steps then accept

run forever

Such an alternative reduction can be represented as follows:
input y {
if (mxxstopsininputsteps)
accept;

infiniteloop;
}

2

