
Basic format for solving problems
through a reduction to SAT

In order to solve a problem P by reducing it to SAT, we write two programs that can handle
any possible input I of P :

• reduction
This program translates the received input I of P into a boolean formula F . If F is
satisfiable, then the following program is executed, otherwise nothing else is done.

• reconstruction
This program queries a modelM that satisfies F (i.e., an assignment of a truth value to
each free propositional variable in F that makes F evaluate to true), and reconstructs
a solution S for the received input I of P .

An example will illustrate the language used to describe these programs, called REDSAT.
Consider the following problem P : given a graph, paint its nodes with colors 1, 2, 3 in a
way such that no two adjacent nodes have the same color. Thus, the input I of P is a
graph G = 〈V, E〉, and the solution S for I is a color assignment that satisfies the desired
condition. In REDSAT, I and S are stored in predefined global variables. In this example
the graph G of I is represented by these two globals:

numnodes: int
edges: array of array [2] of int

and the solution S is represented by this global:
coloring: array of int

Before presenting the reduction and reconstruction programs, we formally describe the
reduction using propositional variables of the form pn,c to denote that node n has color c.
The reduction has three parts. First, it states that each node has a color, second, a node
cannot have more than one color, and third, adjacent nodes cannot have the same color:∧

n∈V

(
pn,1 ∨ pn,2 ∨ pn,3

)∧
n∈V

(
¬(pn,1 ∧ pn,2) ∧ ¬(pn,1 ∧ pn,3) ∧ ¬(pn,2 ∧ pn,3)

)∧
(n1,n2)∈E

∧
c∈{1,2,3} ¬(pn1,c ∧ pn2,c)

Using the previous reduction, the REDSAT solution for this example exercise is as follows:
reduction {

for (n=0 ; n<numnodes ; ++n) {
"node{n}has{1}" or "node{n}has{2}" or "node{n}has{3}";
not ("node{n}has{1}" and "node{n}has{2}");
not ("node{n}has{1}" and "node{n}has{3}");
not ("node{n}has{2}" and "node{n}has{3}");

}
foreach (edge in edges)
for (c=1 ; c<=3 ; ++c)
not ("node{edge[0]}has{c}" and "node{edge[1]}has{c}");

}
reconstruction {
for (n=0 ; n<numnodes ; ++n)

for (c=1 ; c<=3 ; ++c)
if ("node{n}has{c}")
coloring[n] = c;

}

1



Note that, in REDSAT, the boolean formula F is constructed incrementally, by individually
stating certain parts of it (to state a formula we simply write it out as a statement). Also,
observe that in REDSAT we write the propositional variables pn,c as "node{n}has{c}":
with this syntax we define the name of a propositional variable, where n and c are to be
replaced by the value of n and c at the point of execution where "node{n}has{c}" appears.
All such propositional variables are free in the reduction program, but in reconstruction
they are bound to the value assigned to them by a modelM that satisfies F .

1 Variables, types, and expressions
There are three distinct kinds of variables in REDSAT:

Local variables These variables do not need to be declared, since they are created on
the first assignment. They can only contain values with the simple types int and
formula, standing for integer and boolean formula, respectively. Integers are as in
other programming languages, but boolean formulas are a rather atypical type: besides
the values true and false, in REDSAT a value of type formula can also be an object
that represents a boolean formula with free propositional variables.

Global variables These variables are predefined for each exercise, and are either input
variables (accessible by reduction and reconstruction) or output variables (acces-
sible only by reconstruction). As the name suggest, an input variable is read-only,
that is, it can be read but not assigned, whereas an output variable is write-only, that
is, it can be assigned but not read. The names and types of these variables are specified
in the statement of the exercise, and are checked at execution time. Therefore, even if
the program must construct the output, it has to do so within the bounds defined by
its type. A type of a global variable can be anyone of:

• int, an integer.
• array of T, an array of variable size with cells of type T.
• array [N] of T, an array of size N with cells of type T.
• struct { f1: T1 ... fN: TN }, a structure (inspired by the C language) of
fields f1 to fN with types T1 to TN, respectively.

Access to fields in structures is denoted using a dot (.), just like in the C language.
Access to cells in arrays is denoted using brackets ([]). Indices start at 0, and thus,
edges[0] is the first element of the array edges. Also, the size of the array can be
obtained like edges.size.

Aliases To ease the access to deep structures in the input/output global variables, an alias
can be created with the &= operator. For instance, the expression

e &= edges[0];

defines e as an alias for the first edge in the graph, and thus, from that statement on-
wards, any read or write performed on e is translated into a read or write on edges[0].
An alias may also be implicitly created by the foreach iteration, like edge in the pre-
vious example.

REDSAT implements the typical arithmetic operators for integers (+ addition, - subtrac-
tion, * multiplication, / division, % modulus) with the usual precedence. It also implements
the comparison operators for integers (> greater, < less, <= less or equal, >= greater or equal,
== equal, != different), which evaluate either to the boolean formula true or to false.
Increment (++) and decrement (--) are also implemented, both in prefix and postfix form.

2



Thus, it is possible to write i++ or ++i. However, increments and decrements are instruc-
tions (not expressions), so assignments like a = i++ will result in an error. The language
also provides three functions on integers: min(a,b) returns the minimum among the a and
b integers, max(a,b) returns their maximum, and abs(x) returns the absolute value of the
integer x.

REDSAT has a rich set of boolean operators, as the language is specifically designed to
ease the construction of boolean formulas. From higher to lower precedence, these operators
are: not for negation, and for conjunction, or for disjunction, implies/if for implication
and inverse implication, respectively, iff for biconditional. They can be equivalently writ-
ten as !, &, |, ->, <-, <->, respectively. Moreover, it is important to remark that none
of these operators is evaluated with short-circuit, and that implies, if, iff are not asso-
ciative. Another important remark is that, in contrast with most programming languages,
in REDSAT the boolean operators need not evaluate to true or false: instead, when the
operators receive free propositional variables, they are evaluated to a boolean formula with
such free propositional variables. For instance, the expression "p" implies "q" evaluates
to an object that represents the propositional formula p→ q, where p, q are two distinct free
propositional variables.

2 Control structures
REDSAT provides if-else, for, and while with the syntax and semantics of the C lan-
guage. There is also foreach to easily iterate arrays. The following codes are equivalent:

foreach (i,edge in edges) { for (i = 0; i < edges.size; ++i) {
<<iteration body>> edge &= edges[i];

} <<iteration body>>
}

The index variable of a foreach (the i in the previous example) may be omitted if it is not
needed. To ease the iteration over a range of numbers from n (inclusive) to m (exclusive),
REDSAT provides the following syntax:

foreach (i in n...m) {
<<iteration body>>

}

When iterating from n to m, both inclusive, it is written as:
foreach (i in n..m) {
<<iteration body>>

}

Note that the ... range is empty when n = m, whereas the .. range always contains at least
one item, n. The range might be increasing (n < m) or decreasing (n > m), and the iteration
will act accordingly.

With the purpose of conditionally terminating the program, a special instruction stop
halts the execution.

3 Array manipulation
Although the type of the output is specified in advance, arrays within the output which do
not have a fixed size have to be grown during the execution of the program reconstruction.
The method push appends a new element to an array, with a type matching the one specified
beforehand. For instance, with an output variable x of type array of array [3] of int,
issuing the following instruction

x.push;

3



will append an array of 3 elements (all 0) to the array x.
The method push will in fact return a reference to the newly inserted element, so that in

the same instruction the value of this element can be assigned. For instance, with an output
variable x of type array of int, issuing the instruction

x.push = 42;

will append a new element to the array x and set it to 42. As seen in the initial example of
coloring a graph, an array can also be grown by simply accessing a still-non-existing position
n and assigning a value to it:

coloring[n] = c;

Once an element is pushed to the end of the array, it can be accessed with back, which
returns a reference to the last element of the array. This is useful for constructing nested
arrays. For instance, suppose that an output variable x has type array of array of int
and it is empty. The following code

x.push.push = 0;
x.back.push = 1;
x.back.push = 2;
x.push;
x.back.push = 3;
x.back.push = 4;
x.push;

will set x to be the array [[0, 1, 2], [3, 4], []].

4 Advanced boolean expressions
In many exercises, the reduction to SAT might require to express a cardinality constraint,
that is, express that a specific number of formulas are true. In the initial example of coloring
a graph, there is implicitly one such constraint: each node must have exactly one color. We
have encoded such constraint in a rather simple way: with pn,1 ∨ pn,2 ∨ pn,3 we guarantee
that node n has at least one color, and with ¬(pn,1∧pn,2)∧¬(pn,1∧pn,3)∧¬(pn,2∧pn,3) we
guarantee that it has at most one color. REDSAT provides a simpler way to express such
constraints by means of special functions:

• atleast(k,f1,f2,...,fN): returns a formula that is satisfiable if and only if at least
k of the formulas f1, f2, . . . , fN are true.

• atmost(k,f1,f2,...,fN): returns a formula that is satisfiable if and only if no more
than k of the formulas f1, f2, . . . , fN are true.

• exactly(k,f1,f2,...,fN): returns a formula that is satisfiable if and only if exactly
k of the formulas f1, f2, . . . , fN are true.

Hence, in the example we could have equivalently written:

exactly(1, "node{n}has{1}", "node{n}has{2}", "node{n}has{3}");

Two additional functions that return a boolean formula are provided as syntactic sugar:

• and(f1,f2,...,fN): returns a formula that is satisfiable if and only if all the formulas
f1, f2, . . . , fN are true (or there is no formula, i.e., N is 0).

• or(f1,f2,...,fN): returns a formula that is satisfiable if and only if any of the
formulas f1, f2, . . . , fN are true.

4



In most cases, the previous forms of the atleast, atmost, exactly, and, or functions will
not be very useful, since the number N of formulas will need to vary depending on the input
received. For instance, if in the coloring example we had been allowed to choose among K

colors instead of just 3 (with K given as an input value), it would not be possible to write
an expression exactly(1, ...) that receives K parameters, as K is not known beforehand.
To solve this limitation, REDSAT admits a very powerful syntax to pass a variable number
of parameters: instead of writting formulas as parameters, we can write arbitrary code as
parameter. For instance, in the coloring example with K colors, we can write:

exactly(1,
foreach (c in 1..K)
"node{n}has{c}";

);

The effect of this statement is that the exactly function receives K parameters of the form
"node{n}has{c}", with c ranging from 1 to K (both inclusive). Intuitively, the functions
atleast, atmost, exactly, and, or start a scope that captures any formula that is written
out as a statement. Inside a scope, any code is allowed: control structures if, for, while,
foreach are admitted, and even defining/modifying variables or nesting scopes is possible.

As a final example, assume that we are given a global input variable cnf with type
array of array of int representing a formula in conjunctive normal form (i.e., it is an
array of clauses, where each clause is an array of literals, and each literal is either a positive
number p representing the propositional variable p or a negative number −p representing
the negation of the propositional variable p). Using REDSAT we can easily transform cnf

into an actual value of type formula, and save it in a local variable f:
f = and(
foreach (clause in cnf)

or(
foreach (lit in clause)
if (lit > 0)
"var{lit}";

else
not "var{abs(lit)}";

);
);

Note that the propositional variables are given names of the form "var{i}", that the literals
are stated inside an or and thus they are captured in the or’s scope, and that each of such
or is in turn captured into the and’s scope. To further illustrate the fact that inside a scope
it is possible to even define new local variables, the previous code could also be written as:

f = and(
i = 0;
while (i < cnf.size) {
or(
j = 0;
while (j < cnf[i].size) {

lit &= cnf[i][j];
"var{abs(lit)}" iff (lit > 0);
j = j + 1;

}
);
i = i + 1;

}
);

Local variables and aliases defined inside a scope are accessible outside the scope.

5


