RACSO
DFA
CFG
Operations:
Reg
,
CF
PDA
Reductions:
K
,
WP
,
CFG
,
NP
,
SAT
ANTLR:
lexical
,
syntactic
Exams
log in
,
register
,
become guest
This site uses cookies only for the purpose of identifying user sessions. This is required to properly register actions.
Exercises on reductions of word reachability
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a list, i.e., counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\;\wedge\;|R|\in\dot{2}\text{ (as a list, i.e., counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a list, i.e., counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∉
2
˙
(as a list, i.e., counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\;\wedge\;|R|\notin\dot{2}\text{ (as a list, i.e., counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
/
2
˙
(as a list, i.e., counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid u\to_R^*v\;\wedge\;|R|\in\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
∧
∣
R
∣
∉
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid u\to_R^*v\;\wedge\;|R|\notin\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
∧
∣
R
∣
∈
/
2
˙
(as a set, i.e., not counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\;\wedge\;|R|\in\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
∧
∣
R
∣
∉
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\;\wedge\;|R|\notin\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
∧
∣
R
∣
∈
/
2
˙
(as a set, i.e., not counting repetitions)
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\;\wedge\;|R|\in\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
2
˙
(as a set, i.e., not counting repetitions)
}
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∉
2
˙
(as a set, i.e., not counting repetitions)
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\;\wedge\;|R|\notin\dot{2}\text{ (as a set, i.e., not counting repetitions)}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
∧
∣
R
∣
∈
/
2
˙
(as a set, i.e., not counting repetitions)
}
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
with an even number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\text{ with an even number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
with an even number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
with an odd number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\text{ with an odd number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
with an odd number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
with an even number of steps but not with an odd number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid u\to_R^*v\text{ with an even number of steps but not with an odd number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
with an even number of steps but not with an odd number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
with an odd number of steps but not with an even number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid u\to_R^*v\text{ with an odd number of steps but not with an even number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
u
→
R
∗
v
with an odd number of steps but not with an even number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
with an even number of steps but not with an odd number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\text{ with an even number of steps but not with an odd number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
with an even number of steps but not with an odd number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
with an odd number of steps but not with an even number of steps
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\text{ with an odd number of steps but not with an even number of steps}\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
with an odd number of steps but not with an even number of steps
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
+
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^+v\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
+
v
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
+
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^+v\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
+
v
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
w
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
→
R
∗
w
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,w,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\to_R^*w\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
w
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
→
R
∗
w
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
w
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
→
R
∗
w
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,w,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\to_R^*w\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
w
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
→
R
∗
w
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
w
,
R
⟩
∣
∣
Σ
∣
≤
4
∧
u
→
R
∗
v
→
R
∗
w
∧
u
≠
v
≠
w
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,w,R\rangle \mid |\Sigma|\leq 4\;\wedge\;u\to_R^*v\to_R^*w\;\wedge\;u\neq v\neq w\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
w
,
R
⟩
∣
∣Σ∣
≤
4
∧
u
→
R
∗
v
→
R
∗
w
∧
u
=
v
=
w
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
w
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
→
R
∗
w
∧
u
≠
v
≠
w
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,w,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\to_R^*w\;\wedge\;u\neq v\neq w\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
w
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
→
R
∗
w
∧
u
=
v
=
w
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
w
,
R
⟩
∣
∣
Σ
∣
≤
2
∧
u
→
R
∗
v
→
R
∗
w
∧
u
≠
v
≠
w
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,w,R\rangle \mid |\Sigma|\leq 2\;\wedge\;u\to_R^*v\to_R^*w\;\wedge\;u\neq v\neq w\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
w
,
R
⟩
∣
∣Σ∣
≤
2
∧
u
→
R
∗
v
→
R
∗
w
∧
u
=
v
=
w
}
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*vv\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
vv
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
u
→
R
∗
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;uu\to_R^*v\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
uu
→
R
∗
v
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
4
∧
u
u
→
R
∗
v
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 4\;\wedge\;uu\to_R^*vv\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
4
∧
uu
→
R
∗
vv
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
u
→
R
∗
v
v
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;uu\to_R^*vv\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
uu
→
R
∗
vv
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
v
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
∗
v
∧
v
→
R
∗
u
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,v,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^*v\;\wedge\;v\to_R^*u\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
v
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
∗
v
∧
v
→
R
∗
u
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
R
⟩
∣
∣
Σ
∣
≤
4
∧
u
→
R
+
u
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,R\rangle \mid |\Sigma|\leq 4\;\wedge\;u\to_R^+u\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
R
⟩
∣
∣Σ∣
≤
4
∧
u
→
R
+
u
}
(morphism not allowed in the reduction)
{
⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{
⟨
u
,
R
⟩
∣
∣
Σ
∣
≤
3
∧
u
→
R
+
u
}
\{\langle u,v,R\rangle\mid\Sigma=\{a,b\}\;\wedge\;u\to_R^*v\}\quad\leq\quad\{\langle u,R\rangle \mid |\Sigma|\leq 3\;\wedge\;u\to_R^+u\}
{⟨
u
,
v
,
R
⟩
∣
Σ
=
{
a
,
b
}
∧
u
→
R
∗
v
}
≤
{⟨
u
,
R
⟩
∣
∣Σ∣
≤
3
∧
u
→
R
+
u
}
(morphism not allowed in the reduction)